Solutions of Trigonometric Ratios

(1) If sin A = 4/5, find the other trigonometric ratios of the angle A.

Solution:

Let us draw a right △ ABC in which ∠B = 900

We know that,   sin A = 4/5 = BC/AC

Therefore, if BC =4k, then AC = 5k, where k is a positive number.

Now, using the Pythagorean Theorem, we have

                      AC= AB+ BC2
                     (5k)2  = AB+ (4k)2
                     25k= AB+ 16k2
                    25k– 16k2 = AB
                               9k= AB2 
                      So,     AB = 3k

Now, we write all the trigonometric ratios using their definitions.

(1) Cosec A = AC/BC = 5k/4k = 5/4,

(2) Cos A = AB/AC = 3k/5k = 3/5,

(3) Sec A = AC/AB = 5k/3k = 5/3,

(4) Tan A = BC/AB = 4k/3k = 4/3,

(5) Cot A = AB/BC = 3k/4k = 3/4.

(2) If sec A = 13/12, find the other trigonometric ratios of the angle A.

Solution:

Let us draw a right △ ABC in which ∠B = 900

We know that,   sec A = 13/12 = AC/AB

Therefore, if AC =13k, then AB = 12k, where k is a positive number.

Now, using the Pythagorean Theorem we have,

                      AC= AB+ BC2
                     (13k)2  = (12k)2 + BC2
                  (13k)2 – (12k)2  = BC2
                  169k– 144k= BC2
                             25k= BC2
                      So,     BC = 5k

Now, we write all the trigonometric ratios using their definitions.

(1) Cosec A = AC/BC = 13k/12k = 13/12,

(2) Cos A = AB/AC = 5k/13k = 5/13,

(3) Sec A = AC/AB = 13k/5k = 13/5,

(4) Tan A = BC/AB = 12k/5k = 12/5,

(5) Cot A = AB/BC = 5k/12k = 5/12.

(3) In △ ABC, right angle at B, AB = 7cm and AC – BC = 1 cm.

Find the value of sin C and cos C.

Solution: In △ ABC, using the Pythagorean Theorem, we have

                       AC= AB+ BC2
                  AC – BC = 1

            ∴           AC = 1 + BC                   
              (1 + BC)= AB+ BC2
          1  +  BC+ 2BC = AB+ BC2
      ∴ 1  +  BC+ 2BC – BC= AB2
                    ∴ 1 + 2BC = AB2
                    ∴ 1 + 2BC = 72
                    ∴ 1 + 2BC = 49
                     ∴ 2BC = 49 – 1
                      ∴ 2BC = 48
                      ∴ BC = 48/2
                      ∴ BC = 24 cm.
                         AC = 1 + BC
                         AC = 1 + 24
                         AC = 25cm.

Now, 
AB = 7 cm, BC = 24 cm, and AC = 25cm.

Therefore, sin C = AB/AC
                sin C = AB/AC = 7/25 cm,

               cos C = BC/AC 
               cos C = BC/AC = 24/25 cm.

     sin C = 7/25 and cos C = 24/25 cm.

(4)In △ ABC right angled at B, AB = 5cm and 
∠ACB = 300.

Find the lengths of the sides BC and AC. 

Solution:

First we find the length of BC, so we will choose the trigonometric ratio between BC and AB.
Since BC is the base for angle C, and AB is the perpendicular for angle C.

Therefore, tan C = AB/BC 

                        = 5/BC  (AB = 5 cm)

             tan 300  = 1/√3             

              ∴ 1/√3 = 5/ BC

                   BC = 5√3 cm.

Now, for length of side AC we take, 

                   sin 30= AB/AC

                  sin 300  = 1/2                       

                      1/2 = 5/AC  (AB = 5 cm)

                        AC = 5 x 2 

          i.e.,        AC = 10 cm.

(5) If tan A = 15/8, find the other trigonometric ratios of the angle A.

Solution:

Let us draw a right △ ABC in which ∠B = 900

We know that,   tan A = 15/8 = BC/AB

Therefore, if BC =15k, then AB = 8k, where k is a positive number.

Now, using the Pythagorean Theorem, we have

                      AC= AB+ BC2
                      AC=(8k)2+ (15k)2
                      AC2 = 64k2+ 225k2
                      AC= 289k2
                      AC2 = (17k) 
               So,  AC = 17k

Now, we write all the trigonometric ratios using their definitions.

(1) sin A = BC/AC = 15k/17k = 15/17,

(2) Cosec A = AC/BC = 17k/15k = 17/15,

(3) Cos A = AB/AC = 8k/17k = 8/17,

(4) Sec A = AC/AB = 17k/8k = 17/8,

(5) Cot A = AB/BC = 8k/15k = 8/15.

(6) In △ ABC right angled at B, if tan A = 1/√3, find the other trigonometric ratios of the angle A, and the value of 

(i) sin A cosC + cos A sin C

(ii) cos A cosC – sin A sin C

Solution: Let us draw a right △ ABC in which ∠B = 900

We know that,    tan A = 1/√3

                                 = BC/AB

                     BC/AB = 1/√3

Therefore, if BC = 1k and AB = √3k, where k is a positive number.

Now, using the Pythagorean Theorem, we have

                      AC= AB+ BC2
                      AC=(√3k)2+ (1k)2
                      AC2 = 3k+ k2
                      AC= 4k2
                      AC2 = (4k) 

                    So,  AC = 2k

Now, we write all the trigonometric ratios using their definitions.

(1) sin A = BC/AC = k/2k = 1/2,

(2) Cosec A = AC/BC = 2k/k = 2/1,

(3) Cos A = AB/AC = √3k/2k = √3/2,

(4) Sec A = AC/AB = 2k/√3k = 2/√3,

(5) Cot A = AB/BC = √3k/1k = √3/1.

(6) sin C = AB/AC = √3k/2k = √3/2.

(7) Cos C = BC/AC = √k/2k = √1/2.
Now, we put the value in,

(i) sin A cosC + cos A sin C

                  = (1/2)(1/2) + (√3/2)(√3/2)

                  = 1/4 + 3/4

                  = 4/4

   (i) sin A cosC + cos A sin C  = 1.

  (ii) cos A cosC – sin A sin C

                  = (√3/2)(1/2) – (√1/2)(√3/2)

                  = √3/4 – √3/4
                  = 0

 (i) sin A cosC + cos A sin C  = 1. 

(ii) cos A cosC – sin A sin C = 0.            Solution

Leave a Reply

Your email address will not be published. Required fields are marked *