Interior & Exterior angle of a polygon 

In this lesson we will learn the,

(1) Solutions of problems on interior and exterior angles of a polygon. 

Example 1: Find the sum of all interior angles in a regular triangle (3-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 3, so n = 3.

Step 2: Put the values in the formula

                                      = (3 – 2) x 180

                                      = 1 x 180

                                      = 180o

Answer: The sum of the interior angles of a triangle is 

Example 2: Find the sum of all interior angles in a regular pentagon (5-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 5, so n = 5.

Step 2: Put the values in the formula

                                      = (5 – 2) x 180

                                      = 3 x 180

                                      = 540o

Answer: The sum of the interior angles of a pentagon is 540º

Example 3: Find the sum of all interior angles in a regular octagon (8-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 8, so n = 8.

Step 2: Put the values in the formula

                                      = (8 – 2) x 180

                                      = 6 x 180

                                      = 1080o

Answer: The sum of the interior angles of a octagon is 1080º

Example 4: Find the sum of all interior angles in a 12 sided (regular polygon 12-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 12, so n = 12.

Step 2: Put the values in the formula

                                      = (12 – 2) x 180

                                      = 10 x 180

                                      = 1800o

Answer: The sum of the interior angles of a pentagon is 1080º

Example 5: Find the interior angle of a regular octagon (8-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 8, so n = 8.

Step 2: Put the values in the formula

                                      = (8 – 2) x 180

                                      = 6 x 180

                                      = 1080o

In a regular octagon, all interior angles are congruent, so all angles have same measure.

Therefore, 
the interior angle of a regular octagon is = 1080/8  = 135o
interior angle of a regular octagon is = 135o.

Answer: The interior angle of a octagon is 135o.

Example 6: Find the fifth interior angle of a convex pentagon if it’s four interior angles are 35o,  85o, 135o and 115o.

 Solution: 

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 5, so n = 5.

Step 2: Put the values in the formula

                                      = (5 – 2) x 180

                                      = 3 x 180

                                      = 540o

Therefore, subtract the sum of four angles in order to get to fifth angle.

The given four angles are 35o,  85o, 135o and 115o.

Thus the fifth angle is = 540 – (35 + 85 + 135 + 115)

The sum of given four angles  = 35 + 85 + 135 + 115

The sum of given four angles  = 370o

Thus the fifth angle is = 540 – (35 + 85 + 135 + 115)

Thus the fifth angle is = 540 – 370

the fifth angle is = 170o

Answer: The fifth angle of the pentagon is 170o

Example 7: Find the sum of all interior angles in a regular hexagon (6-sided).

Solution:

Step 1: Write the formula

Sum of interior angles of a polygon = (n-2) x 180o
where n is number of sides.

In this problem number of sides in the given polygon is 6, so n = 6.

Step 2: Put the values in the formula

                                      = (6 – 2) x 180

                                      = 4 x 180

                                      = 720o

Answer: The sum of the interior angles of a hexagon is 720o.

Leave a Reply

Your email address will not be published. Required fields are marked *